Specific binding of naloxone to ovine brain tissue: comparison of brain regions and endocrine states.
نویسندگان
چکیده
Binding of [3H]naloxone ([3H]NAL) to brain membranes was quantified by Scatchard analysis using two methods of separating bound from free [3H]NAL. In the centrifugation method, membranes that were soluble at 1,000 x g, but sedimented at 20,000 x g, were incubated with [3H]NAL. For filtration, all membranes that sedimented at 20,000 x g were incubated and filtered through glass filter fibers. Nonspecific binding was estimated using greater than 500-fold excess of unlabeled naloxone (10(-6) M). Specific binding of [3H]NAL was used to generate linear multiple-point Scatchard plots, which indicated a single class of high-affinity sites. In Exp. 1, 10 ovariectomized (OVX) ewes were injected with estradiol-17 beta alone or in combination with progesterone. Compared with OVX controls, these hormonal treatments did not affect binding of [3H]NAL (centrifugation method) to combined hypothalamus (HYP) + preoptic (POA) tissues. In cyclic ewes (Exp. 2, filtration method), affinity constants (2.4 +/- .2 x 10(8) M-1) did not differ among HYP, POA and basal forebrain (BF) tissues, but BF had more sites (39 +/- 3 fmol/mg) than either HYP (14 +/- 1) or POA (17 +/- 1). Binding affinity and concentration of sites within each brain area (HYP, POA, BF) did not differ between d 8 and d 16 (preovulatory but after luteolysis) in normally cycling ewes. Overall, neural tissue dissected from BF had a greater concentration of binding sites than HYP or POA. Exogenous and endogenous fluctuations in ovarian steroids did not affect binding of [3H]NAL to these tissues.
منابع مشابه
In Silico Design and Verification of LAMP-BDNF Chimeric Protein for Presentation of BDNF on the Surface of Exosomes for Drug Delivery Through Blood-Brain Barrier
Background and purpose: The mature form of brain-derived neurotrophic factor (BDNF) binds to BDNF/NT-3 growth factors receptor (Trk-B). This binding leads to activation of Ras–MAPK pathway which is integrated with cell growth and proliferation. The BDNF deficiency is correlated with various diseases and affects aging and miscellaneous. In the present study we aimed to design a chimeric LAMP-BDN...
متن کاملComparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei
Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...
متن کاملQuantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model
Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...
متن کاملگیرنده های سروتونین - به کجا می روند؟
Thirty-three Years ago, Gaddum and Picarelli classified the serotonin receptors in the guinea pig ileum into D and M types based on the activity of dibenzyline (D) and morphine (M) to block contractions of intestinal smooth muscle caused by serotonin. The subsequent location of specific ligand binding sites for serotonin in the brain has led to the identification of ten serotonin receptor sub-t...
متن کاملRecognition and characterization of Erythropoietin binding-proteins in the brain of mice
Objective(s): Erythropoietin (EPO), is a 34KDa glycoprotein hormone, which belongs to type 1 cytokine superfamily. EPO involves in erythrocyte maturation through inhibition of apoptosis in erythroid cells. Besides its main function, protective effects of EPO in heart and brain tissues have been reported. EPO has a critical role in development, growth, and homeostasis of brain. Furthermore EPO h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of animal science
دوره 67 6 شماره
صفحات -
تاریخ انتشار 1989